DEKRA Process Safety

battery testing

The frontiers of science are being pushed to its limits to develop new and better batteries that can last longer, operate better and endure harsher environmental conditions. In order to achieve this, new chemicals and formulations need to be developed and studied.

Lithium-based batteries are one of the most popular types of rechargeable batteries for portable electronics, electric vehicles, military, and aerospace applications. Some of the new compositions developed, in combination with metals like Lithium (highly reactive and flammable) in batteries, may accelerate the likelihood of undergoing a hazardous thermal runaway reaction during usage. If the thermal runaway is accompanied by gas generation, it can result in over-pressurization/explosion of the batteries and/or the device housing the batteries.

To address the hazards associated with thermal runaways, it is very important to understand the thermal behavior of new chemical formulations in the research and development phase. Small scale calorimetry testing techniques can be used to study the thermal behavior.

Chilworth possess a wide variety of calorimetry techniques to study the thermal behavior of your new chemical formulations, including Differential Scanning Calorimetry (DSC), Carries Tube (CT) and Accelerating Rate Calorimetry (ARC). The calorimetry technique can be used to address the thermal hazard evaluation of new chemical formulations to include:

Onset decomposition temperature of productAdiabatic temperature rise
Heat and pressure generation ratesTime to maximum rate, temperature and pressure
Decomposition energyMaximum reaction temperature and pressure developed


Contact us at Ph: 609-799-4449 or This email address is being protected from spambots. You need JavaScript enabled to view it. to see how we can help your organization with Battery Chemical Testing during the research and development phase of your new chemical battery formulations.